• 1.01 MB
  • 2022-12-29 13:30:43 发布

最新孝感市中考满分作文-曲面方程PPT课件

  • 23页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
进入夏天,少不了一个热字当头,电扇空调陆续登场,每逢此时,总会想起那一把蒲扇。蒲扇,是记忆中的农村,夏季经常用的一件物品。  记忆中的故乡,每逢进入夏天,集市上最常见的便是蒲扇、凉席,不论男女老少,个个手持一把,忽闪忽闪个不停,嘴里叨叨着“怎么这么热”,于是三五成群,聚在大树下,或站着,或随即坐在石头上,手持那把扇子,边唠嗑边乘凉。孩子们却在周围跑跑跳跳,热得满头大汗,不时听到“强子,别跑了,快来我给你扇扇”。孩子们才不听这一套,跑个没完,直到累气喘吁吁,这才一跑一踮地围过了,这时母亲总是,好似生气的样子,边扇边训,“你看热的,跑什么?”此时这把蒲扇,是那么凉快,那么的温馨幸福,有母亲的味道!  蒲扇是中国传统工艺品,在我国已有三千年多年的历史。取材于棕榈树,制作简单,方便携带,且蒲扇的表面光滑,因而,古人常会在上面作画。古有棕扇、葵扇、蒲扇、蕉扇诸名,实即今日的蒲扇,江浙称之为芭蕉扇。六七十年代,人们最常用的就是这种,似圆非圆,轻巧又便宜的蒲扇。  蒲扇流传至今,我的记忆中,它跨越了半个世纪,也走过了我们的半个人生的轨迹,携带着特有的念想,一年年,一天天,流向长长的时间隧道,袅孝感市中考满分作文-曲面方程 一、曲面方程的概念求到两定点A(1,2,3)和B(2,-1,4)等距离的点的化简得即说明:动点轨迹为线段AB的垂直平分面.引例:显然在此平面上的点的坐标都满足此方程,不在此平面上的点的坐标不满足此方程.解:设轨迹上的动点为轨迹方程.机动目录上页下页返回结束 定义2.一条平面曲线二、旋转曲面绕其平面上一条定直线旋转一周所形成的曲面叫做旋转曲面.该定直线称为旋转轴.例如:机动目录上页下页返回结束 建立yoz面上曲线C绕z轴旋转所成曲面的方程:故旋转曲面方程为当绕z轴旋转时,若点给定yoz面上曲线C:则有则有该点转到机动目录上页下页返回结束 思考:当曲线C绕y轴旋转时,方程如何?机动目录上页下页返回结束 图7-28圆锥面 例4.求坐标面xoz上的双曲线分别绕x轴和z轴旋转一周所生成的旋转曲面方程.解:绕x轴旋转绕z轴旋转这两种曲面都叫做旋转双曲面.所成曲面方程为所成曲面方程为机动目录上页下页返回结束 四、二次曲面三元二次方程适当选取直角坐标系可得它们的标准方程,下面仅就几种常见标准型的特点进行介绍.研究二次曲面特性的基本方法:截痕法其常见类型有:椭球面、抛物面、双曲面的图形通常为二次曲面.(二次项系数不全为0)机动目录上页下页返回结束 1.椭球面(1)范围:(2)与坐标面的交线:椭圆机动目录上页下页返回结束 与的交线为椭圆:(4)当a=b时为旋转椭球面;同样的截痕及也为椭圆.当a=b=c时为球面.(3)截痕:为正数)机动目录上页下页返回结束 2.抛物面(1)椭圆抛物面(p,q同号)(2)双曲抛物面(鞍形曲面)特别,当p=q时为绕z轴的旋转抛物面.(p,q同号)机动目录上页下页返回结束 3.双曲面(1)单叶双曲面椭圆.时,截痕为(实轴平行于x轴;虚轴平行于z轴)平面上的截痕情况:机动目录上页下页返回结束双曲线: 虚轴平行于x轴)时,截痕为时,截痕为(实轴平行于z轴;机动目录上页下页返回结束相交直线:双曲线: (2)双叶双曲面双曲线椭圆注意单叶双曲面与双叶双曲面的区别:双曲线单叶双曲面双叶双曲面P18目录上页下页返回结束图形 内容小结1.空间曲面三元方程球面旋转曲面如,曲线绕z轴的旋转曲面:柱面如,曲面表示母线平行z轴的柱面.又如,椭圆柱面,双曲柱面,抛物柱面等.机动目录上页下页返回结束 2.二次曲面三元二次方程椭球面抛物面:椭圆抛物面双曲抛物面双曲面:单叶双曲面双叶双曲面机动目录上页下页返回结束